{"id":7549,"date":"2020-10-22T15:19:54","date_gmt":"2020-10-22T14:19:54","guid":{"rendered":"https:\/\/www.innovationnewsnetwork.com\/?p=7549"},"modified":"2020-12-10T08:14:41","modified_gmt":"2020-12-10T08:14:41","slug":"new-tools-for-nuclear-astrophysics-experiments","status":"publish","type":"post","link":"https:\/\/www.innovationnewsnetwork.com\/new-tools-for-nuclear-astrophysics-experiments\/7549\/","title":{"rendered":"New tools for nuclear astrophysics experiments"},"content":{"rendered":"
Nuclear reactions and decays generate the energy that makes the stars shine. At the same time, these processes produce the elements that ultimately become the building blocks for new stars, planets, and life itself. For most of their lives, stars exist in an equilibrium between the outward pressure caused by nuclear burning and the inward pressure resulting from the gravitational attraction. Thus, changes in the thermodynamic conditions in the interior of a star can lead to dramatic changes in the stellar structure. These can be driven both by the rate of energy generation and also by variations in the chemical composition. In other words, nucleosynthesis drives stellar evolution<\/a>.<\/p>\n The goal of nuclear astrophysics is a detailed understanding of the nuclear processes in stars. This information is an essential input to stellar models that in turn can be validated through observations. Such observations provide motivation for further nuclear studies and predictions of nucleosynthesis can in turn stimulate further observational studies. Almost all questions in astrophysics require an understanding of stars or stellar properties and so the study of nuclear reactions in the Universe is at the forefront of nuclear astrophysics.<\/p>\n Studying the reactions that occur in stars would seem to be a simple proposition because they occur at low energies and thus do not require large accelerators or intricate detector setups. However, such measurements are made exceedingly difficult by the fact that these energies are well below what is required to overcome the electrostatic repulsion between the positively charged nuclei. Thus, stellar reactions proceed via quantum-mechanical tunnelling, which leads to reaction timescales on the order of millions to billions of years during the quiescent phases of stellar evolution \u2013 and sets the scale for stellar lifetimes. In addition, the most interesting reactions to measure are often the slowest because they set timescales or limit energy production. As a result, direct measurements of astrophysically-interesting reactions require specialised accelerators, detectors, and techniques for reducing backgrounds. Even so, most reactions can only be measured at energies above the astrophysical region, and then the experimental cross-sections must be extrapolated to stellar energies using well-understood reaction theories, constrained by as much experimental information as possible.<\/p>\n Stars begin their lives by converting hydrogen into helium through reaction chains and cycles. Later, helium is fused into carbon and oxygen. Subsequent nuclear burning stages will produce nuclei up to the iron-nickel region. Helium burning in evolved stars also releases neutrons that, in turn, initiate nuclear reactions and thereby create about half of the elements heavier than iron. The remaining heavy elements are thought to be produced in the extreme environments of supernova explosions or neutron-star mergers. Nuclear reactions also power transient phenomena such as classical novae and X-ray bursts. A varied tapestry of nuclear processes is woven through these sites and scenarios, but the focus here is on the tools needed to study quiescent hydrogen and helium burning.<\/p>\n